Part Number Hot Search : 
FST20180 FA7703 TIP141 ADE05SA MSMP17A S503T SMV1845 KBU605
Product Description
Full Text Search
 

To Download APT1204R7SFLLG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7390 rev b 7-2006 maximum ratings all ratings: t c = 25c unless otherwise specified. g d s caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. power mos 7 ? is a new generation of low loss, high voltage, n-channel enhancement mode power mosfets. both conduction and switchinglosses are addressed with power mos 7 ? by significantly lowering r ds(on) and q g . power mos 7 ? combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with microsemi'spatented metal gate structure. lower input capacitance increased power dissipation lower miller capacitance easier to drive lower gate charge, qg to-247 or surface mount d 3 pak package apt1204r7bfll apt1204r7sfll 1200v 3.5a 4.700 ?? ?? ? characteristic / test conditionsdrain-source breakdown voltage (v gs = 0v, i d = 250a) drain-source on-state resistance 2 (v gs = 10v, i d = 1.75a) zero gate voltage drain current (v ds = 1200v, v gs = 0v) zero gate voltage drain current (v ds = 960v, v gs = 0v, t c = 125c) gate-source leakage current (v gs = 30v, v ds = 0v) gate threshold voltage (v ds = v gs , i d = 1ma) symbol v dss i d i dm v gs v gsm p d t j ,t stg t l i ar e ar e as parameterdrain-source voltage continuous drain current @ t c = 25c pulsed drain current 1 gate-source voltage continuousgate-source voltage transient total power dissipation @ t c = 25c linear derating factoroperating and storage junction temperature range lead temperature: 0.063" from case for 10 sec. avalanche current 1 (repetitive and non-repetitive) repetitive avalanche energy 1 single pulse avalanche energy 4 unit volts amps volts watts w/c c amps mj static electrical characteristics symbol bv dss r ds(on) i dss i gss v gs(th) unit volts ohms ana volts min typ max 1200 4.70 250 1000 100 35 apt1204r7b_sfll 1200 3.5 14 3040 135 1.08 -55 to 150 300 3.5 10 425 power mos 7 r fredfet to-247 d 3 pak microsemi website - http://www.microsemi.com downloaded from: http:///
050-7390 rev b 7-2006 dynamic characteristics apt1204r7b_sfll source-drain diode ratings and characteristics thermal characteristics characteristic / test conditionscontinuous source current (body diode) pulsed source current 1 (body diode) diode forward voltage 2 (v gs = 0v, i s = -i d 3.5a) peak diode recovery dv / dt 5 reverse recovery time(i s = -i d 3.5a, di / dt = 100a/s) reverse recovery charge(i s = -i d 3.5a, di / dt = 100a/s) peak recovery current(i s = -i d 3.5a, di / dt = 100a/s) symbol i s i sm v sd dv / dt t rr q rr i rrm unit amps volts v/ns ns c amps min typ max 3.5 14 1.3 18 t j = 25c 250 t j = 125c 515 t j = 25c 0.5 t j = 125c 1.1 t j = 25c 8.3 t j = 125c 11.5 symbol r jc r ja min typ max 0.90 40 unitc/w characteristicjunction to case junction to ambient 1 repetitive rating: pulse width limited by maximum junction temperature 2 pulse test: pulse width < 380 s, duty cycle < 2% 3 see mil-std-750 method 3471 4 starting t j = +25c, l = 69.39mh, r g = 25 ? , peak i l = 3.5a 5 dv / dt numbers reflect the limitations of the test circuit rather than the device itself. i s - i d 3.5a di / dt 700a/s v r 1200 t j 150 c 6 eon includes diode reverse recovery. see figures 18, 20. microsemi reserves the right to change, without notice, the specifications and information contained herein. symbol c iss c oss c rss q g q gs q gd t d(on) t r t d(off) t f e on e off e on e off characteristicinput capacitance output capacitance reverse transfer capacitance total gate charge 3 gate-source charge gate-drain ("miller ") charge turn-on delay time rise time turn-off delay time fall time turn-on switching energy 6 turn-off switching energyturn-on switching energy 6 turn-off switching energy test conditions v gs = 0v v ds = 25v f = 1 mhz v gs = 10v v dd = 600v i d = 3.5a @ 25c resistive switching v gs = 15v v dd = 600v i d = 3.5a @ 25c r g = 1.6 ? inductive switching @ 25c v dd = 800v, v gs = 15v i d = 3.5a, r g = 5 ? inductive switching @ 125c v dd = 800v, v gs = 15v i d = 3.5a, r g = 4.3 ? min typ max 715130 3631 4 21 72 2024 115 23 135 25 unit pf nc ns j note: duty factor d = t 1 / t 2 peak t j = p dm x z jc + t c t 1 t 2 p dm single pulse z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 1, maximum effective transient thermal impedance, junction-to-case vs pulse duration 1.0 0.800.60 0.40 0.20 0 0.5 0.1 0.3 0.7 0.90.05 downloaded from: http:///
050-7390 rev b 7-2006 typical performance curves apt1204r7 b_sfll r ds (on), drain-to-source on resistance i d , drain current (amperes) i d , drain current (amperes) (normalized) v gs (th), threshold voltage bv dss , drain-to-source breakdown r ds (on), drain-to-source on resistance i d , drain current (amperes) (normalized) voltage (normalized) 0 5 10 15 20 25 30 012345678 0 1 2 3456 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 10 86 4 2 0 3.5 3 2.5 2 1.5 1 0.5 0 2.52.0 1.5 1.0 0.5 0.0 87 6 5 4 3 2 1 0 1.401.30 1.20 1.10 1.00 0.90 0.80 1.15 1.10 1.05 1.00 0.95 0.90 0.85 1.21.1 1.0 0.9 0.8 0.7 0.6 t j = +125c t j = +25c t j = -55c v ds > i d (on) x r ds (on)max. 250sec. pulse test @ <0.5 % duty cycle v gs =10v v gs =20v 6v 6.5v 7v 5v v gs =15,10 & 8v 5.5v v ds , drain-to-source voltage (volts) figure 2, transient thermal impedance model figure 3, lo w voltage output characteristics v gs , gate-to-source voltage (volts) i d , drain current (amperes) figure 4, transfer characteristics figure 5, r ds (on) vs drain current t c , case temperature (c) t j , junction temperature (c) figure 6, maximum drain current vs case temperature figure 7, breakdown voltage vs temperature t j , junction temperature (c) t c , case temperature (c) figure 8, on-resistance vs. temperature figure 9, threshold voltage vs temperature 0.386 0.508 0.00336 0.0903 dissipated power (watts) t j (c) t c (c) z ext are the external thermal impedances: case to sink,sink to ambient, etc. set to zero when modeling only the case to junction. z ext normalized to v gs = 10v @ 1.75a i d = 1.75a v gs = 10v downloaded from: http:///
apt1204r7 b_sfll 050-7390 rev b 7-2006 v ds , drain-to-source voltage (volts) v ds , drain-to-source voltage (volts) figure 10, maximum safe operating area figure 11, capacitance vs drain-to-source voltage q g , total gate charge (nc) v sd , source-to-drain voltage (volts) figure 12, gate charges vs gate-to-source voltage figure 13, source-drain diode forward voltage v gs , gate-to-source voltage (volts) i d , drain current (amperes) i dr , reverse drain current (amperes) c, capacitance (pf) 1 10 100 1200 0 10 20 30 40 50 0 5 10 15 20 25 30 35 40 45 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1410 51 0.5 1612 84 0 c rss c iss c oss t j =+150c t j =+25c v ds =250v v ds =100v v ds =400v i d = 3.5a t c =+25c t j =+150c single pulse operation here limited by r ds (on) 10ms 1ms 100s 3,0001,000 500100 5010 100 5010 1 i d (a) i d (a) figure 14, delay times vs current figure 15, rise and fall times vs current i d (a) r g , gate resistance (ohms) figure 16, switching energy vs current figure 17, switching energy vs. gate resistance v dd = 800v r g = 4.3 ? t j = 125c l = 100h t d(on) t d(off) e on e off e on e off t r t f e on and e off ( j) t d(on) and t d(off) (ns) switching energy ( j) t r and t f (ns) 0 123456 0123456 0 1 2 3 4 5 6 0 10 20 30 40 50 v dd = 800v r g = 4.3 ? t j = 125c l = 100h v dd = 800v r g = 4.3 ? t j = 125c l = 100h e on includes diode reverse recovery v dd = 800v i d = 3.5a t j = 125c l = 100h e on includes diode reverse recovery 3530 25 20 15 10 50 180160 140 120 100 8060 40 20 0 4035 30 25 20 15 10 50 200160 120 8040 0 downloaded from: http:///
050-7390 rev b 7-2006 typical performance curves apt1204r7 b_sfll 15.49 (.610)16.26 (.640) 5.38 (.212) 6.20 (.244) 6.15 (.242) bsc 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065) 2.13 (.084) 1.01 (.040)1.40 (.055) 3.50 (.138) 3.81 (.150) 2.87 (.113) 3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) drain drain source gate 5.45 (.215) bsc dimensions in millimeters and (inches) 2-plcs. to - 247 package outline 15.95 (.628)16.05(.632) 1.22 (.048)1.32 (.052) 5.45 (.215) bsc{2 plcs.} 4.98 (.196)5.08 (.200) 1.47 (.058) 1.57 (.062) 2.67 (.105)2.84 (.112) 0.46 (.018) {3 plcs} 0.56 (.022) dimensions in millimeters (inches) heat sink (drain)and leads are plated 3.81 (.150)4.06 (.160) (base of lead) drain(heat sink) 1.98 (.078)2.08 (.082) gate drain source 0.020 (.001)0.178 (.007) 1.27 (.050)1.40 (.055) 11.51 (.453) 11.61 (.457) 13.41 (.528)13.51(.532) revised8/29/97 1.04 (.041)1.15(.045) 13.79 (.543)13.99(.551) revised 4/18/95 d 3 pak package outline microsemis products are covered by one or more of u.s.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. us and foreign patents pending. all rights reserved. i c d.u.t. apt60d120b v ce figure 20, inductive switching test circuit v cc g figure 18, turn-on switching waveforms and definitions figure 19, turn-off switching waveforms and definitions 90% 90% t d(off) t f 10% 0 drain current drain voltage gate voltage t j 125c 10% 90% switching energy t d(on) t r 10% 5% drain current drain voltage gate voltage t j 125c 5% switching energy apt15dq120 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT1204R7SFLLG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X